6.178: Introduction to
Software Engineering in

Java
Lecture 8: Tips & Tricks

Today’s Game Plan

- Lambda Expressions in Java - Andrew
- Map, Filter, Reduce - Graeme
- Recursion - Katy

Check your Eclipse Settings! (Window > Preferences

[JOX) Preferences
type filter text [x] Compiler ¥ v
» General) .)
» Ant Configure Project Specific Settings...
» Code Recommenders JDK Compliance
» Help
» Install/Update Compiler compliance level: 1.8 T
Vv Java derant i .
» Appearance Use default compliance settings
» Build Path Generated .class files compatibility: 1.8 <
P Code Style
» Compiler Source compatibility: 1.8 ¢
» Debug
» Editor Disallow identifiers called 'assert': Error <
P Installed JREs : 2 e (e
: Disallow identifiers called 'enum': Error <
JUnit
Properties Files Editor
» Maven Classfile Generation
» Mylyn
» Oomph Add variable attributes to generated class files (used by the debugger)
:$un/Debug Add line number attributes to generated class files (used by the debugger)
eam
Validation Add source file name to generated class file (used by the debugger)
:;V;fowBullder Preserve unused (never read) local variables

v

Store information about method parameters (usable via reflection)

Restore Defaults Apply

Cancel | Ok]

Obligatory XKCD

WHY DO YOU LIKE FONCTIONAL
PROGRAMMING S0 MUCH? WHAT
DOE5 IT ACTUALLY GETYOU?
TAIL RECURSION 15 “Functional programming combines the flexibility
fiO Rﬂ""m and power of abstract mathematics with the

intuitive clarity of abstract mathematics.”
- XKCD 1270

What is functional programming? Why do | care?

“In computer science, functional programming is a programming paradigm—a

style of building the structure and elements of computer programs—that treats
computation as the evaluation of mathematical functions and avoids changing-
state and mutable data.”

- Wikipedia

Functional programming offers another way of solving problems that makes some
solutions cleaner and helps avoid bugs. It can help abstract away iteration and
allow more easily see how a system interacts.

Shifting Gears

- So far, we have worked entirely in the realm of Object-Oriented Programming.
Which makes sense, because Java is really oriented towards OOP.

- Java 8 includes some things that allow for functional programming
- This is not going to be a lecture on functional programming
- This is going to be a lecture on functional programming tools

Lambda Expressions

- A syntax that represents a function in terms of its inputs and outputs inside of
a method body

- Right now, you can only pass around data in Java
Your objects return, store, and take in data

- Lambda expressions let you also pass around code, just like you pass around
datal!

Can easily do mathy things like function composition

Let's write some
Lambdas!

Java Functionals

e Make operations on lists a lot easier

e Used to apply methods to each element of a list
o Often done using lambdas

e Represent a different way to think about programming
o Indexes and iteration are abstracted away
o Generally written more compactly than previous

code shown in this class
e Most common functionals: Map, Filter, Reduce

Map

e Transform that “maps” elements of a list of one type to
different elements of a different (sometimes the same)
type

e Can be used for any type of transform

e Will always return a list of the same length
o Returned list not necessarily same type and returned

values may not be related to initial values

e Syntax: list.stream().map(v -> new_value).collect()

Filter

e Filters out elements of a list that don’t “pass” the given
“test”
o Testis given via a boolean expression in filter
o If the boolean expression is true, the element will

remain in the list, otherwise it will be removed

e Will NOT always return a list of the original length, but
will not modify the elements otherwise

e Syntax: list.stream().filter(v -> v >= 20).collect()

Reduce

e (Goes through the elements of a list and builds a new
structure based on the value of the list

e May return any type

e Syntax: list.stream().reduce(0, (a, b) ->a + b)

Reduce

e (Goes through the elements of a list and builds a new
structure based on the value of the list

e May return any type

e Syntax: list.stream().reduce(0, (a, b) ->a + b)

Recursion

What is it?
Did you mean recursion?

Calling a function within itself to solve a smaller subproblem
ex: Fibonacci sequence
nth fib number = (n-1)th fib number + (n-2)th fib number

Pieces

Base Case(s):
the smallest subproblem(s)
a concrete answer

Recursive Step:
all other subproblems
calls a smaller subproblem

Fibonacci

int fibonacci(int n) {

// base cases

if (n == 0) A
return 0;

}

if (n == 1) |
return 1;

}

// recursive step

return fibonacci(n-1) + fibonacci (n-2);

Fibonacci

fibonacci(4): —»3
return fibqnacci(3) + fibonacci(2)

fibonacci(3): —»2 1
return fibqnacci(2) + fibonacci(1)

fibonacci(2): —»1 1
return fibonacci(1) + fibonacci(0)

1

Factorial

int factorial (int n) {

1if (n == 0) {
return 1;

}

return n * factorial (n-1);

Factorial

factorial(3): —6
return 3 * factorial(2)

factorial(2): —»2
return 2 * factorial(1)

factorial(1): —»1
return 1 * factorial(0)

More practice

http://codingbat.com/java/Recursion-1

http://codingbat.com/java/Recursion-1
http://codingbat.com/java/Recursion-1

