
6.178: Introduction to
Software Engineering in

Java
Lecture 8: Tips & Tricks

Today’s Game Plan

- Lambda Expressions in Java - Andrew
- Map, Filter, Reduce - Graeme
- Recursion - Katy

Check your Eclipse Settings! (Window > Preferences)

Obligatory XKCD

“Functional programming combines the flexibility
and power of abstract mathematics with the
intuitive clarity of abstract mathematics.”

- XKCD 1270

What is functional programming? Why do I care?
“In computer science, functional programming is a programming paradigm—a
style of building the structure and elements of computer programs—that treats
computation as the evaluation of mathematical functions and avoids changing-
state and mutable data.”

- Wikipedia

Functional programming offers another way of solving problems that makes some
solutions cleaner and helps avoid bugs. It can help abstract away iteration and
allow more easily see how a system interacts.

Shifting Gears
- So far, we have worked entirely in the realm of Object-Oriented Programming.

- Which makes sense, because Java is really oriented towards OOP.

- Java 8 includes some things that allow for functional programming
- This is not going to be a lecture on functional programming
- This is going to be a lecture on functional programming tools

Lambda Expressions
- A syntax that represents a function in terms of its inputs and outputs inside of

a method body
- Right now, you can only pass around data in Java

- Your objects return, store, and take in data

- Lambda expressions let you also pass around code, just like you pass around
data!

- Can easily do mathy things like function composition

Let’s write some
Lambdas!

Java Functionals
● Make operations on lists a lot easier
● Used to apply methods to each element of a list

○ Often done using lambdas
● Represent a different way to think about programming

○ Indexes and iteration are abstracted away
○ Generally written more compactly than previous

code shown in this class
● Most common functionals: Map, Filter, Reduce

Map
● Transform that “maps” elements of a list of one type to

different elements of a different (sometimes the same)
type

● Can be used for any type of transform
● Will always return a list of the same length

○ Returned list not necessarily same type and returned
values may not be related to initial values

● Syntax: list.stream().map(v -> new_value).collect()

Filter
● Filters out elements of a list that don’t “pass” the given

“test”
○ Test is given via a boolean expression in filter
○ If the boolean expression is true, the element will

remain in the list, otherwise it will be removed
● Will NOT always return a list of the original length, but

will not modify the elements otherwise
● Syntax: list.stream().filter(v -> v >= 20).collect()

Reduce
● Goes through the elements of a list and builds a new

structure based on the value of the list
● May return any type
● Syntax: list.stream().reduce(0, (a, b) -> a + b)

Reduce
● Goes through the elements of a list and builds a new

structure based on the value of the list
● May return any type
● Syntax: list.stream().reduce(0, (a, b) -> a + b)

Recursion

What is it?
Did you mean recursion?

Calling a function within itself to solve a smaller subproblem
ex: Fibonacci sequence
 nth fib number = (n-1)th fib number + (n-2)th fib number

Pieces
Base Case(s):

the smallest subproblem(s)
a concrete answer

Recursive Step:
all other subproblems
calls a smaller subproblem

Fibonacci
int fibonacci(int n) {

// base cases
if (n == 0) {

return 0;
}
if (n == 1) {

return 1;
}
// recursive step
return fibonacci(n-1) + fibonacci(n-2);

}

Fibonacci
fibonacci(4):

return fibonacci(3) + fibonacci(2)

fibonacci(3):
return fibonacci(2) + fibonacci(1)

fibonacci(2):
return fibonacci(1) + fibonacci(0)

01

11

2 1

3

Factorial
int factorial(int n) {

}

if (n == 0) {
return 1;

}

return n * factorial(n-1);

Factorial
factorial(3):

return 3 * factorial(2)

factorial(2):
return 2 * factorial(1)

factorial(1):
return 1 * factorial(0)

1

1

6

2

More practice
http://codingbat.com/java/Recursion-1

http://codingbat.com/java/Recursion-1
http://codingbat.com/java/Recursion-1

