
6.178 Introduction to
Software Engineering in

Java
Lecture 7: Files & I/O

What is I/O?
● Stands for Input/Output
● Standard Input/Output

○ Provided by Operating System
○ System.out.println() is Standard Output

● Files
○ Read/Write
○ Files exist permanently

How Does It Work?
● Java reads Streams of Bytes

○ Byte Streams are raw binary data
○ Raw binary data is hard to work with

● Java provides abstractions to help
○ Character Streams convert binary data to the local

character set (Usually UTF-8)
○ Slow because they read one character at a time

How Does It Work? (Con)
● Buffered Streams

○ Java keeps a buffer in its local memory
○ This buffer contains room for a lot of characters
○ When reading, a Buffered Stream reads a bunch of

characters at once and stores them in Java memory
○ When writing, a Buffered Stream writes to a buffer

until told to write to output

Standard Input
● Provided by Operating System
● Java has two ways of interacting with Stdin

○ Program arguments
■ Provided as an argument to main()

○ Input Streams (read from System.in)
■ Usually wrapped in Buffered Streams

Standard Output
● Provided by Operating System
● System.out

○ println(String string) prints with a newline at the end
○ print(String string) prints without a newline

● System.err
○ Used for error handling (not technically stdout)
○ Prints in red in Eclipse

Exceptions
● Streams expect to read until reaching a natural

conclusion (pressing return key or reaching EOF) and
write until closed.

● This doesn’t always happen
○ Operating Systems crash

● Java doesn’t like unexpected behavior
○ Statements reading I/O throw exceptions or use

try/catch blocks (use the former)

Exceptions (con)
● What happens when a stream closes?

○ Exceptions terminate the program and print the error
○ Try/Catch blocks swallow the error and let the

programmer deal with it (generally bad)
● Method signatures show exceptions

○ public static void main(String[] args) throws
IOException { }

Exercise
● Adventure:

○ clone https://github.mit.edu/6178-iap16/<your_kerberos>_ lec7.git
○ Instructions are in the README.md
○ Complete Problem 1
○ TLDR: Create a Bridgekeeper class

■ Bridgekeeper takes an argument name (given in run
configurations)

■ Bridgekeeper asks you for your name, your quest, and your
favorite color

■ If you aren’t sure of your answers he won’t let you pass

Reading Files
● Files are read as a stream of bytes (chars and/or

buffers if using Java abstractions)
● Located at a path

○ “myfile.txt” at your project level
○ “files/myfile.extension” if organizing
○ “/User/graeme/Documents/…..” if outside project

● Have an encoding
○ Usually UTF-8 (not always)

Reading Files (con)
● Files have extensions

○ Describe what kind of binary format they use
○ Plain Text: .txt, Comma Separated Values: .csv, Tab

Separated Values: .tsv
○ Abstraction that helps developers recognize how

data will be structured
○ Sometimes there will be libraries to wrap reading

specific extensions

Reading Files (example)
● BufferedReader reader = new BufferedReader(new

FileReader(filename));
○ File treated as a Buffered Stream

● While (true) {
○ String line = reader.readline();
○ if (line == null) break;
○ List<String> csvLine = Arrays.asList(str.split(“,”));

● }

Writing Files
● Java has several means of writing files

○ FileWriter
○ Files.write()
○ FileOutputStream

● Java writes binary data to files
○ Appending a file extension is meaningless
○ Make sure that the data you write is formatted

properly by your program

Writing Files (example)
● List<String> thingsToWrite;
● FileWriter writer = new FileWriter(“outfile.txt”);
● for (String thingToWrite: thingsToWrite) {

○ writer.write(thingToWrite + “\n”);
● }
● writer.close()
● // Note that you must close the writer when you finish

writing

Exercise
● Adventure:

○ clone https://github.mit.edu/6178-iap16/<your_kerberos>_ lec7.git
○ Instructions are in the README.md
○ Complete Problems 2, 3, and 4
○ TLDR:

■ Create an Oracle to read fortunes from fortunes.txt
■ Create a Scribe to write messages to messages.txt
■ Tell your oracle to read from your messages

