
6.S092
Lecture 2

Last Class

● Administrative Stuff
● Primitive Data Type
● Primitive Data Structures
● Rules and Convention for naming
● Assignment to a variable
● Casting
We will go over these quickly.

Primitive Data Types

● boolean
● byte 8-bit
● short 16-bit
● int 32-bit
● long 64-bit
● float 32-bit
● double 64-bit

http://docs.
oracle.
com/javase/tutor
ial/java/nutsand
bolts/datatypes.
html

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

Primitive Data Structures

● arrays
● String

arrays

Fixed sized immutable data structure.
Can be of primitives or Objects

Naming Rules

● Cannot start with a number
● Cannot use JAVA’s reserved words
● Cannot start with special characters except

‘$’ and ‘_’
● Cannot contain whitespace
● Case Sensitive

Naming Conventions

● Names should be meaningful
● Constants are all CAPS
● variable should start with a lowercase
● Use camelcase
● camelcaseLooksLikeThis

JAVA Reserved Words
http://docs.oracle.
com/javase/tutorial/java/nutsandbol
ts/_keywords.html

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/_keywords.html

Variable Assignment

(dataType) (name) = (theStuffYouWantItToBe);

dataType ∈ {int, double, String, Object , ...}
name ∈ {any valid name following the rules}
= is the operator that assigns the stuff on the
right to the variable on the left.

Variable Assignment Examples

String s = “Hi”;
int two = 2;
double pi = 3.1415;
double e = 2.718;

JAVA is STATICALLY TYPED!!!

array assignment

Use the “[]” qualifier
Two different ways to initialize

array example

int[] naturalNum = {1,2,3,4,5};
int fiveThings [] = new int[5];
String[] names = new String[65];

Casting

● Upcasting (Java may do this automatically)
○ Going from an int to a double
○ Going from a subclass to a superclass

■ We’ll learn this later in the course
● Downcasting (YOU must force it)

○ Going from a double to an int
○ Going from a superclass to a subclass

■ We’ll learn this later in the course

Casting Example

int five = 5;
double sixPointFive = five + 1.5;

NOTE: Upcasting and String Concatenation
int five = 5;
String fiveInString = “Five = ” + five;

Casting Example Cont.

double pi = Math.PI; // 3.141592…
int three = pi; // will NOT compile
int three = (int) pi; // will compile

Dog avalanche = new Dog();
Labrador lab = (Labrador) avalance;
// Only work if Labrador EXTENDS Dog

New Topics

● Operators
● Commenting
● Scope
● Control Flow

○ if, if/else, if/else if, if/else if/else
● Loops

○ while, do-while, for, for each

New Topics Cont.

● Printing to console
● Accepting user input
● Privacy
● Methods and Modularity

○ Naming
○ Return type and Arguments
○ The “return” statement

Operator - Order of Operations

The following slides on operator follow the
order of operations.

Note: Extensive list http://docs.oracle.
com/javase/tutorial/java/nutsandbolts/operators
.html

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

Unary Operators

Postfix : expr++ or expr --
Prefix : ++expr or --expr
Negative : -
Negate : !

Binary Operators in Order of Operation

Multiplication - *
Division - /
Modulo - %
Addition - +
Subtraction - -
Assignment - =

Relational Operators

Less than - <
Greater than - >
Less than or equal to - <=
Greater than or equal to - >=
Instance of - instanceof

Equality Operators

Equals - ==
Not equal - !=

Logical Operators

And - &&
Or - ||

Ternary Operators
If / Else - ? :

Assignment

Happens Last

Commenting

Line Comment : Begins with a ‘//’
Anything after // is a comment

Block Comment : Begins with a ‘/*’ ends with ‘*/’
Anything inside /* and */ are comments

JavaDocs

JavaDocs are the description of the things you
use and do in Java such as variables and
methods.

JavaDocs Cont.

JavaDocs begin with /** and end with */
Anything inside the /** and */ will be
displayed if ones hovers over methods and
variables that it describes.

We will see examples of all types of
commenting in the code today.

Scope

A variable “lives” inside of the braces

Not like C/C++ where you need to allocate
memory.

Control Flow - if

if (booleanExpression)
statement;

OR
if (booleanExpression) {

statements;
}

Control Flow - if/else

if (booleanExpression)
statement;

else
statement;

if (booleanExpression){
statements;

}
else{

statements;
}

Control Flow - if/else if

if (booleanExpression)
statement;

else if (booleanExpression)
statement;

NOTE: No limit on
how many else if;
you can have as
many as you need.
Just like the
previous cases
braces allow for
multiple
statements.

Control Flow - if/else if/else

if (booleanExpression)
statement;

else if (booleanExpression)
statement;

else
statement;

NOTE: No limit on
how many else if;
you can have as
many as you need.
Just like the
previous cases
braces allow for
multiple
statements.

Loops - while

while (booleanExpression) {
statements;

}

Just like if/else structures you can also have a
one line statement.

Loops - do-while

do{
statements;

}while (booleanExpression);

Loops - for

for (int i = 0; i < 10; i++) {
statements;

}

Loops - for each

ONLY works on arrays and lists. It does
something for each of the elements.

int[] nums = {1,2,3,4,5,6,7,8};
for (int numbers : nums){

statements;
}

WARNING: Modifying in a for each
int [] nums = {3,4,5};
for (int i : nums){
i += 1; // same as i = i + 1;

}
for (int i : nums){
System.out.println(i);

}

The first for loop
may not do what
you want it to do.

Correct Way
int [] nums = {3,4,5};

for (int i = 0; i < nums.length; i++){

nums[i]++; // nums[i] = nums[i]+1

}

for (int i : nums){

System.out.println(i);

}

Two things you should take for granted for now

Printing to console

System.out.print();
System.out.println();
System.out.printf();

Accepting user input

Use the Scanner class

Scanner in = new Scanner(System.in);
String userIn = in.nextLine();

Privacy - Who can see and manipulate

public : everyone
(default) : inside package
protected : subclasses
private : only the class

Methods - Return Type/Naming/Args

First the basics

public static void main(String[] args){

}

Visibility

public static void main(String[] args){

}

Visibility

Keyword:
Specifies if it is a

class or an
instance method

public static void main(String[] args){

}

Visibility

Keyword:
Specifies if it is a

class or an
instance method

Return
Type

public static void main(String[] args){

}

Visibility

Keyword:
Specifies if it is a

class or an
instance method

Return
Type

Name of the
Method

public static void main(String[] args){

}

Visibility

Keyword:
Specifies if it is a

class or an
instance method

Return
Type

Name of the
Method

Parameters/Arguments

Method - “return” statement

public int giveMeANumber(){
return 42;

}

The return statement in a function
returns the specified return type
to where the function was called.

Lets CODE!

